Nuprl Lemma : gcd-reduce-coprime

p,q:ℤ.  ∃x,y:ℤ(((x p) (y q)) 1 ∈ ℤsupposing CoPrime(p,q)


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q prop: uall: [x:A]. B[x] sq_type: SQType(T) implies:  Q guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) cand: c∧ B divides: a nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  gcd-reduce-ext coprime_wf subtype_base_sq int_subtype_base nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf equal-wf-base exists_wf equal-wf-base-T divisor_bound less_than_wf intformle_wf int_formula_prop_le_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation productElimination isectElimination intEquality promote_hyp instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination because_Cache dependent_pairFormation setElimination rename unionElimination natural_numberEquality approximateComputation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation baseApply closedConclusion baseClosed applyEquality multiplyEquality dependent_set_memberEquality imageMemberEquality

Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}x,y:\mBbbZ{}.  (((x  *  p)  +  (y  *  q))  =  1)  supposing  CoPrime(p,q)



Date html generated: 2018_05_21-PM-00_59_22
Last ObjectModification: 2018_05_19-AM-06_35_23

Theory : num_thy_1


Home Index