Nuprl Lemma : gcd-reduce-coprime
∀p,q:ℤ. ∃x,y:ℤ. (((x * p) + (y * q)) = 1 ∈ ℤ) supposing CoPrime(p,q)
Proof
Definitions occuring in Statement :
coprime: CoPrime(a,b)
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
top: Top
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
coprime: CoPrime(a,b)
,
gcd_p: GCD(a;b;y)
,
cand: A c∧ B
,
divides: b | a
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
Lemmas referenced :
gcd-reduce-ext,
coprime_wf,
subtype_base_sq,
int_subtype_base,
nat_properties,
decidable__equal_int,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermAdd_wf,
itermMultiply_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_term_value_mul_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
equal-wf-base,
exists_wf,
equal-wf-base-T,
divisor_bound,
less_than_wf,
intformle_wf,
int_formula_prop_le_lemma
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
isect_memberFormation,
productElimination,
isectElimination,
intEquality,
promote_hyp,
instantiate,
cumulativity,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
because_Cache,
dependent_pairFormation,
setElimination,
rename,
unionElimination,
natural_numberEquality,
approximateComputation,
lambdaEquality,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
multiplyEquality,
dependent_set_memberEquality,
imageMemberEquality
Latex:
\mforall{}p,q:\mBbbZ{}. \mexists{}x,y:\mBbbZ{}. (((x * p) + (y * q)) = 1) supposing CoPrime(p,q)
Date html generated:
2018_05_21-PM-00_59_22
Last ObjectModification:
2018_05_19-AM-06_35_23
Theory : num_thy_1
Home
Index