Nuprl Lemma : gcd-reduce-coprime
∀p,q:ℤ.  ∃x,y:ℤ. (((x * p) + (y * q)) = 1 ∈ ℤ) supposing CoPrime(p,q)
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
coprime: CoPrime(a,b), 
gcd_p: GCD(a;b;y), 
cand: A c∧ B, 
divides: b | a, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
gcd-reduce-ext, 
coprime_wf, 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
exists_wf, 
equal-wf-base-T, 
divisor_bound, 
less_than_wf, 
intformle_wf, 
int_formula_prop_le_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
productElimination, 
isectElimination, 
intEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
setElimination, 
rename, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
multiplyEquality, 
dependent_set_memberEquality, 
imageMemberEquality
Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}x,y:\mBbbZ{}.  (((x  *  p)  +  (y  *  q))  =  1)  supposing  CoPrime(p,q)
Date html generated:
2018_05_21-PM-00_59_22
Last ObjectModification:
2018_05_19-AM-06_35_23
Theory : num_thy_1
Home
Index