Nuprl Lemma : gcd_p_zero_rel

a,b:ℤ.  (GCD(a;0;b)  ((a b ∈ ℤ) ∨ (a (-b) ∈ ℤ)))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q or: P ∨ Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q gcd_p: GCD(a;b;y) and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: cand: c∧ B pm_equal: = ± j
Lemmas referenced :  gcd_p_wf istype-int divides_reflexivity any_divs_zero divides_anti_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin Error :universeIsType,  cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination independent_pairFormation

Latex:
\mforall{}a,b:\mBbbZ{}.    (GCD(a;0;b)  {}\mRightarrow{}  ((a  =  b)  \mvee{}  (a  =  (-b))))



Date html generated: 2019_06_20-PM-02_21_33
Last ObjectModification: 2018_10_02-PM-11_35_12

Theory : num_thy_1


Home Index