Nuprl Lemma : gcd_p_zero_rel
∀a,b:ℤ.  (GCD(a;0;b) 
⇒ ((a = b ∈ ℤ) ∨ (a = (-b) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
gcd_p: GCD(a;b;y)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
pm_equal: i = ± j
Lemmas referenced : 
gcd_p_wf, 
istype-int, 
divides_reflexivity, 
any_divs_zero, 
divides_anti_sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}a,b:\mBbbZ{}.    (GCD(a;0;b)  {}\mRightarrow{}  ((a  =  b)  \mvee{}  (a  =  (-b))))
Date html generated:
2019_06_20-PM-02_21_33
Last ObjectModification:
2018_10_02-PM-11_35_12
Theory : num_thy_1
Home
Index