Nuprl Lemma : impossible-equation-by-eqmod

[x,z,a:ℤ].  (((27 x) (z z) (3 z) z) (1 (999 a)) ∈ ℤ))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] not: ¬A multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: subtype_rel: A ⊆B
Lemmas referenced :  satisfiable-full-omega-tt intformeq_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermVar_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal-wf-base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule computeAll baseApply closedConclusion baseClosed applyEquality because_Cache independent_functionElimination

Latex:
\mforall{}[x,z,a:\mBbbZ{}].    (\mneg{}(((27  *  x)  +  (z  +  z)  +  (3  *  x  *  z)  +  z)  =  (1  +  (999  *  a))))



Date html generated: 2017_04_17-AM-09_43_12
Last ObjectModification: 2017_02_27-PM-05_37_45

Theory : num_thy_1


Home Index