Nuprl Lemma : not-poly-choice-eta-2'

¬(∀f:Base. ((∀x,y:Base.  ((f y) x ∈ Base))  (f ~ λx,y. x)))


Proof




Definitions occuring in Statement :  all: x:A. B[x] not: ¬A implies:  Q apply: a lambda: λx.A[x] base: Base sqequal: t equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T all: x:A. B[x] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] false: False
Lemmas referenced :  not-poly-choice-eta-2 all_wf base_wf equal-wf-base sqequal-wf-base
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution independent_functionElimination thin hypothesis dependent_functionElimination hypothesisEquality sqequalRule isectElimination lambdaEquality baseApply closedConclusion baseClosed voidElimination functionEquality

Latex:
\mneg{}(\mforall{}f:Base.  ((\mforall{}x,y:Base.    ((f  x  y)  =  x))  {}\mRightarrow{}  (f  \msim{}  \mlambda{}x,y.  x)))



Date html generated: 2018_05_21-PM-01_15_34
Last ObjectModification: 2018_05_02-PM-01_18_57

Theory : num_thy_1


Home Index