Nuprl Lemma : not-poly-choice-eta-2

¬(∀f:Base. ((∀x,y:Base.  ((f y) x ∈ Base))  (f ~ λx,y. (f y))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] not: ¬A implies:  Q apply: a lambda: λx.A[x] base: Base sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top false: False
Lemmas referenced :  has-value_wf_base is-exception_wf base_wf all_wf equal-wf-base sqequal-wf-base cbv_bottom_lemma not-btrue-sqle-bottom strictness-islambda bottom-sqle
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalSqle divergentSqle thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule baseApply closedConclusion baseClosed hypothesisEquality hypothesis callbyvalueApply callbyvalueCallbyvalue callbyvalueReduce sqleReflexivity applyExceptionCases axiomSqleEquality callbyvalueExceptionCases exceptionSqequal dependent_functionElimination independent_functionElimination because_Cache lambdaEquality functionEquality isect_memberEquality voidElimination voidEquality

Latex:
\mneg{}(\mforall{}f:Base.  ((\mforall{}x,y:Base.    ((f  x  y)  =  x))  {}\mRightarrow{}  (f  \msim{}  \mlambda{}x,y.  (f  x  y))))



Date html generated: 2018_05_21-PM-01_15_30
Last ObjectModification: 2018_05_01-PM-04_37_49

Theory : num_thy_1


Home Index