Nuprl Lemma : polymorphic-choice-base-sq
∀f:Base. ((f ∈ ⋂A:Type. (A ⟶ A ⟶ A)) 
⇒ ((f ~ λx.if f x is lambda then λy.x otherwise ⊥) ∨ (f ~ λx,y. y)))
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
islambda: if z is lambda then a otherwise b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
or: P ∨ Q
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
polymorphic-choice-base, 
equal-wf-base, 
base_wf, 
poly-choice-eta-2, 
poly-choice-eta-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
unionElimination, 
inlFormation, 
sqequalIntensionalEquality, 
hypothesisEquality, 
baseClosed, 
sqequalRule, 
inrFormation, 
baseApply, 
closedConclusion, 
instantiate, 
isectElimination, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}f:Base
    ((f  \mmember{}  \mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A))  {}\mRightarrow{}  ((f  \msim{}  \mlambda{}x.if  f  x  is  lambda  then  \mlambda{}y.x  otherwise  \mbot{})  \mvee{}  (f  \msim{}  \mlambda{}x,y.  y))\000C)
Date html generated:
2018_05_21-PM-01_16_12
Last ObjectModification:
2018_05_01-PM-04_37_58
Theory : num_thy_1
Home
Index