Nuprl Lemma : polymorphic-choice-base

f:⋂A:Type. (A ⟶ A ⟶ A). ((∀x,y:Base.  ((f y) x ∈ Base)) ∨ (∀x,y:Base.  ((f y) y ∈ Base)))


Proof




Definitions occuring in Statement :  all: x:A. B[x] or: P ∨ Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q prop: squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} true: True iff: ⇐⇒ Q and: P ∧ Q cand: c∧ B false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rev_implies:  Q
Lemmas referenced :  istype-universe base_wf or_wf equal-wf-base istype-base set_subtype_base equal_wf subtype_rel_self subtype_base_sq polymorphic-choice-int squash_wf true_wf iff_weakening_equal int_subtype_base type-with-y=n full-omega-unsat intformeq_wf itermConstant_wf istype-int int_formula_prop_eq_lemma istype-void int_term_value_constant_lemma int_formula_prop_wf type-with-x=0-y=1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isectIsType,  cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin universeEquality hypothesis Error :functionIsType,  Error :universeIsType,  hypothesisEquality Error :inhabitedIsType,  setEquality because_Cache equalityTransitivity equalitySymmetry imageElimination sqequalRule imageMemberEquality baseClosed applyEquality Error :inlFormation_alt,  Error :equalityIsType4,  Error :dependent_set_memberEquality_alt,  Error :unionIsType,  Error :inrFormation_alt,  applyLambdaEquality setElimination rename baseApply closedConclusion Error :lambdaEquality_alt,  independent_isectElimination dependent_functionElimination unionElimination cumulativity independent_functionElimination Error :inlEquality_alt,  axiomEquality Error :inrEquality_alt,  natural_numberEquality productElimination independent_pairFormation intEquality voidElimination approximateComputation Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  hyp_replacement Error :equalityIsType1

Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A).  ((\mforall{}x,y:Base.    ((f  x  y)  =  x))  \mvee{}  (\mforall{}x,y:Base.    ((f  x  y)  =  y)))



Date html generated: 2019_06_20-PM-02_44_48
Last ObjectModification: 2018_10_17-AM-10_42_24

Theory : num_thy_1


Home Index