Nuprl Lemma : polymorphic-choice-base
∀f:⋂A:Type. (A ⟶ A ⟶ A). ((∀x,y:Base.  ((f x y) = x ∈ Base)) ∨ (∀x,y:Base.  ((f x y) = y ∈ Base)))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
false: False
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-universe, 
base_wf, 
or_wf, 
equal-wf-base, 
istype-base, 
set_subtype_base, 
equal_wf, 
subtype_rel_self, 
subtype_base_sq, 
polymorphic-choice-int, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
int_subtype_base, 
type-with-y=n, 
full-omega-unsat, 
intformeq_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_eq_lemma, 
istype-void, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
type-with-x=0-y=1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isectIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
Error :inhabitedIsType, 
setEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
Error :inlFormation_alt, 
Error :equalityIsType4, 
Error :dependent_set_memberEquality_alt, 
Error :unionIsType, 
Error :inrFormation_alt, 
applyLambdaEquality, 
setElimination, 
rename, 
baseApply, 
closedConclusion, 
Error :lambdaEquality_alt, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
cumulativity, 
independent_functionElimination, 
Error :inlEquality_alt, 
axiomEquality, 
Error :inrEquality_alt, 
natural_numberEquality, 
productElimination, 
independent_pairFormation, 
intEquality, 
voidElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
hyp_replacement, 
Error :equalityIsType1
Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A).  ((\mforall{}x,y:Base.    ((f  x  y)  =  x))  \mvee{}  (\mforall{}x,y:Base.    ((f  x  y)  =  y)))
Date html generated:
2019_06_20-PM-02_44_48
Last ObjectModification:
2018_10_17-AM-10_42_24
Theory : num_thy_1
Home
Index