Nuprl Lemma : type-with-y=n

n,m:ℤ.  ((¬(n m ∈ ℤ))  (∀y:Base. ∃T:Type. ((y n ∈ T) ∧ (m m ∈ T) ∧ ((n m ∈ T)  (y m ∈ Base)))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q int: base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T not: ¬A false: False uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B or: P ∨ Q cand: c∧ B and: P ∧ Q refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) exists: x:A. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] quotient: x,y:A//B[x; y] sq_type: SQType(T) guard: {T}
Lemmas referenced :  istype-base istype-void istype-int subtype_rel_self int_subtype_base equal_wf or_wf base_wf set_subtype_base quotient_wf equal-wf-base quotient-member-eq subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule cut introduction extract_by_obid hypothesis Error :functionIsType,  Error :equalityIstype,  Error :inhabitedIsType,  hypothesisEquality independent_pairFormation Error :setIsType,  because_Cache Error :equalityIsType4,  Error :productIsType,  Error :unionIsType,  independent_isectElimination Error :lambdaEquality_alt,  thin isectElimination sqequalHypSubstitution applyEquality baseClosed closedConclusion baseApply Error :inlFormation_alt,  Error :inrFormation_alt,  productElimination equalityTransitivity equalitySymmetry unionElimination Error :dependent_pairFormation_alt,  setEquality unionEquality setElimination rename productEquality dependent_functionElimination Error :dependent_set_memberEquality_alt,  independent_functionElimination Error :universeIsType,  sqequalBase pertypeElimination promote_hyp instantiate cumulativity voidElimination

Latex:
\mforall{}n,m:\mBbbZ{}.    ((\mneg{}(n  =  m))  {}\mRightarrow{}  (\mforall{}y:Base.  \mexists{}T:Type.  ((y  =  n)  \mwedge{}  (m  =  m)  \mwedge{}  ((n  =  m)  {}\mRightarrow{}  (y  =  m)))))



Date html generated: 2019_06_20-PM-02_44_39
Last ObjectModification: 2018_12_06-PM-11_56_39

Theory : num_thy_1


Home Index