Nuprl Lemma : type-with-x=0-y=1

x,y:Base.  ∃T:Type. ((x 0 ∈ T) ∧ (y 1 ∈ T) ∧ ((0 1 ∈ T)  (↓(x y ∈ Base) ∨ (x 1 ∈ Base) ∨ (y 0 ∈ Base))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B guard: {T} or: P ∨ Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a sq_type: SQType(T) true: True false: False exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T not: ¬A iff: ⇐⇒ Q rev_implies:  Q quotient: x,y:A//B[x; y]
Lemmas referenced :  base_wf or_wf equal-wf-base set_wf subtype_base_sq subtype_rel_self int_subtype_base quotient_wf quotient-member-eq squash_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalRule inrFormation inlFormation setElimination thin rename hypothesisEquality sqequalHypSubstitution isectElimination productEquality because_Cache baseClosed lambdaEquality independent_pairFormation unionElimination equalitySymmetry equalityTransitivity productElimination instantiate cumulativity independent_isectElimination dependent_functionElimination independent_functionElimination natural_numberEquality intEquality voidElimination promote_hyp dependent_pairFormation setEquality dependent_set_memberEquality imageElimination imageMemberEquality functionEquality sqequalIntensionalEquality pertypeElimination

Latex:
\mforall{}x,y:Base.    \mexists{}T:Type.  ((x  =  0)  \mwedge{}  (y  =  1)  \mwedge{}  ((0  =  1)  {}\mRightarrow{}  (\mdownarrow{}(x  =  y)  \mvee{}  (x  =  1)  \mvee{}  (y  =  0))))



Date html generated: 2018_05_21-PM-01_14_27
Last ObjectModification: 2018_05_01-PM-04_37_27

Theory : num_thy_1


Home Index