Nuprl Lemma : poly-choice-eta-1
∀f:Base. ((∀x,y:Base.  ((f x y) = y ∈ Base)) 
⇒ (f ~ λx,y. y))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
base: Base
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
has-value: (a)↓
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
top: Top
Lemmas referenced : 
all_wf, 
base_wf, 
equal-wf-base, 
subtype_base_sq, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base, 
not_id_sqle_bottom, 
strictness-apply
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
productElimination, 
independent_functionElimination, 
intEquality, 
callbyvalueApply, 
callbyvalueApplyCases, 
unionElimination, 
sqequalIntensionalEquality, 
divergentSqle, 
sqleReflexivity, 
voidElimination, 
sqleRule, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}f:Base.  ((\mforall{}x,y:Base.    ((f  x  y)  =  y))  {}\mRightarrow{}  (f  \msim{}  \mlambda{}x,y.  y))
Date html generated:
2018_05_21-PM-01_15_15
Last ObjectModification:
2018_05_01-PM-04_37_46
Theory : num_thy_1
Home
Index