Nuprl Lemma : poly-choice-eta-1

f:Base. ((∀x,y:Base.  ((f y) y ∈ Base))  (f ~ λx,y. y))


Proof




Definitions occuring in Statement :  all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] base: Base sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_type: SQType(T) has-value: (a)↓ or: P ∨ Q not: ¬A false: False top: Top
Lemmas referenced :  all_wf base_wf equal-wf-base subtype_base_sq subtype_rel_self equal_wf squash_wf true_wf iff_weakening_equal value-type-has-value int-value-type has-value_wf_base is-exception_wf sqle_wf_base not_id_sqle_bottom strictness-apply
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality baseApply closedConclusion baseClosed hypothesisEquality instantiate cumulativity independent_isectElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination because_Cache natural_numberEquality imageMemberEquality productElimination independent_functionElimination intEquality callbyvalueApply callbyvalueApplyCases unionElimination sqequalIntensionalEquality divergentSqle sqleReflexivity voidElimination sqleRule isect_memberEquality voidEquality

Latex:
\mforall{}f:Base.  ((\mforall{}x,y:Base.    ((f  x  y)  =  y))  {}\mRightarrow{}  (f  \msim{}  \mlambda{}x,y.  y))



Date html generated: 2018_05_21-PM-01_15_15
Last ObjectModification: 2018_05_01-PM-04_37_46

Theory : num_thy_1


Home Index