Nuprl Lemma : polymorphic-constant-nat

f:⋂A:Type. (A ⟶ ℕ). ∃n:ℕ. ∀A:Type. ∀x:A.  ((f x) n ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  polymorphic-constant nat_wf nat-mono set-value-type le_wf int-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination independent_pairFormation sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality dependent_functionElimination isectEquality universeEquality cumulativity functionEquality

Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  \mBbbN{}).  \mexists{}n:\mBbbN{}.  \mforall{}A:Type.  \mforall{}x:A.    ((f  x)  =  n)



Date html generated: 2018_05_21-PM-01_11_49
Last ObjectModification: 2018_05_01-PM-04_36_57

Theory : num_thy_1


Home Index