Nuprl Lemma : quadratic-residue_wf
∀[a,p:ℤ]. (a is a quadratic residue mod p ∈ ℙ)
Proof
Definitions occuring in Statement :
quadratic-residue: a is a quadratic residue mod p
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
quadratic-residue: a is a quadratic residue mod p
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
eqmod_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
lambdaEquality,
hypothesisEquality,
multiplyEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[a,p:\mBbbZ{}]. (a is a quadratic residue mod p \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-04_27_24
Last ObjectModification:
2015_12_26-PM-08_05_27
Theory : num_thy_1
Home
Index