Nuprl Lemma : quadratic-residue_wf

[a,p:ℤ].  (a is quadratic residue mod p ∈ ℙ)


Proof




Definitions occuring in Statement :  quadratic-residue: is quadratic residue mod p uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T quadratic-residue: is quadratic residue mod p so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf eqmod_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality multiplyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,p:\mBbbZ{}].    (a  is  a  quadratic  residue  mod  p  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_27_24
Last ObjectModification: 2015_12_26-PM-08_05_27

Theory : num_thy_1


Home Index