Nuprl Lemma : quadratic-residue_wf
∀[a,p:ℤ].  (a is a quadratic residue mod p ∈ ℙ)
Proof
Definitions occuring in Statement : 
quadratic-residue: a is a quadratic residue mod p
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
quadratic-residue: a is a quadratic residue mod p
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
eqmod_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
multiplyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,p:\mBbbZ{}].    (a  is  a  quadratic  residue  mod  p  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_27_24
Last ObjectModification:
2015_12_26-PM-08_05_27
Theory : num_thy_1
Home
Index