Nuprl Lemma : int_term-definition

[A:Type]. ∀[R:A ⟶ int_term() ⟶ ℙ].
  ((∀const:ℤ{x:A| R[x;"const"]} )
   (∀var:ℤ{x:A| R[x;vvar]} )
   (∀left,right:int_term().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "+" right]} ))
   (∀left,right:int_term().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "-" right]} ))
   (∀left,right:int_term().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "*" right]} ))
   (∀num:int_term(). ({x:A| R[x;num]}   {x:A| R[x;"-"num]} ))
   {∀v:int_term(). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  itermMinus: "-"num itermMultiply: left "*" right itermSubtract: left "-" right itermAdd: left "+" right itermVar: vvar itermConstant: "const" int_term: int_term() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  int_term-induction set_wf int_term_wf all_wf itermMinus_wf itermMultiply_wf itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality applyEquality because_Cache independent_functionElimination functionEquality universeEquality intEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  int\_term()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}const:\mBbbZ{}.  \{x:A|  R[x;"const"]\}  )
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  \{x:A|  R[x;vvar]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "+"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "-"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "*"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}num:int\_term().  (\{x:A|  R[x;num]\}    {}\mRightarrow{}  \{x:A|  R[x;"-"num]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:int\_term().  \{x:A|  R[x;v]\}  \})



Date html generated: 2016_05_14-AM-06_59_11
Last ObjectModification: 2015_12_26-PM-01_13_05

Theory : omega


Home Index