Nuprl Lemma : isMonomialOne_wf

[m:iMonomial()]. (isMonomialOne(m) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isMonomialOne: isMonomialOne(m) iMonomial: iMonomial() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isMonomialOne: isMonomialOne(m) iMonomial: iMonomial() uimplies: supposing a prop: int_nzero: -o
Lemmas referenced :  sorted_wf subtype_rel_self band_wf null_wf eq_int_wf iMonomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin independent_pairEquality hypothesisEquality setElimination rename dependent_set_memberEquality hypothesis extract_by_obid isectElimination intEquality independent_isectElimination natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m:iMonomial()].  (isMonomialOne(m)  \mmember{}  \mBbbB{})



Date html generated: 2017_09_29-PM-05_52_08
Last ObjectModification: 2017_05_03-AM-11_26_54

Theory : omega


Home Index