Nuprl Lemma : isMonomialOne_wf
∀[m:iMonomial()]. (isMonomialOne(m) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
isMonomialOne: isMonomialOne(m)
, 
iMonomial: iMonomial()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
isMonomialOne: isMonomialOne(m)
, 
iMonomial: iMonomial()
, 
uimplies: b supposing a
, 
prop: ℙ
, 
int_nzero: ℤ-o
Lemmas referenced : 
sorted_wf, 
subtype_rel_self, 
band_wf, 
null_wf, 
eq_int_wf, 
iMonomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[m:iMonomial()].  (isMonomialOne(m)  \mmember{}  \mBbbB{})
Date html generated:
2017_09_29-PM-05_52_08
Last ObjectModification:
2017_05_03-AM-11_26_54
Theory : omega
Home
Index