Nuprl Lemma : itermMultiply_functionality
∀[a,b,c,d:int_term()].  (a "*" c ≡ b "*" d) supposing (a ≡ b and c ≡ d)
Proof
Definitions occuring in Statement : 
equiv_int_terms: t1 ≡ t2, 
itermMultiply: left "*" right, 
int_term: int_term(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
equiv_int_terms: t1 ≡ t2, 
all: ∀x:A. B[x], 
int_term_value: int_term_value(f;t), 
itermMultiply: left "*" right, 
int_term_ind: int_term_ind, 
prop: ℙ
Lemmas referenced : 
equiv_int_terms_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
multiplyEquality, 
functionEquality, 
intEquality, 
lambdaEquality, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c,d:int\_term()].    (a  "*"  c  \mequiv{}  b  "*"  d)  supposing  (a  \mequiv{}  b  and  c  \mequiv{}  d)
 Date html generated: 
2016_05_14-AM-07_00_01
 Last ObjectModification: 
2015_12_26-PM-01_12_30
Theory : omega
Home
Index