Nuprl Lemma : ml-int-vec-add_wf
∀[as,bs:ℤ List].  (ml-int-vec-add(as;bs) ∈ ℤ List)
Proof
Definitions occuring in Statement : 
ml-int-vec-add: ml-int-vec-add(as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ml-int-vec-add-sq, 
int-vec-add_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    (ml-int-vec-add(as;bs)  \mmember{}  \mBbbZ{}  List)
Date html generated:
2017_09_29-PM-05_56_54
Last ObjectModification:
2017_05_19-PM-06_24_57
Theory : omega
Home
Index