Nuprl Lemma : ml-int-vec-add_wf

[as,bs:ℤ List].  (ml-int-vec-add(as;bs) ∈ ℤ List)


Proof




Definitions occuring in Statement :  ml-int-vec-add: ml-int-vec-add(as;bs) list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  ml-int-vec-add-sq int-vec-add_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    (ml-int-vec-add(as;bs)  \mmember{}  \mBbbZ{}  List)



Date html generated: 2017_09_29-PM-05_56_54
Last ObjectModification: 2017_05_19-PM-06_24_57

Theory : omega


Home Index