Nuprl Lemma : ml-int-vec-add-sq
∀[as,bs:ℤ List].  (ml-int-vec-add(as;bs) ~ as + bs)
Proof
Definitions occuring in Statement : 
ml-int-vec-add: ml-int-vec-add(as;bs), 
int-vec-add: as + bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
or: P ∨ Q, 
ml-int-vec-add: ml-int-vec-add(as;bs), 
ml_apply: f(x), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
nil: [], 
it: ⋅, 
ifthenelse: if b then t else f fi , 
bor: p ∨bq, 
null: null(as), 
btrue: tt, 
int-vec-add: as + bs, 
sq_type: SQType(T), 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
bfalse: ff, 
spreadcons: spreadcons
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list_wf, 
equal-wf-base, 
nat_wf, 
list_subtype_base, 
int_subtype_base, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
ml_apply-sq, 
nil_wf, 
list-valueall-type, 
void-valueall-type, 
subtype_base_sq, 
int-vec-add_wf, 
product_subtype_list, 
spread_cons_lemma, 
equal_wf, 
set_subtype_base, 
le_wf, 
cons_wf, 
int-valueall-type, 
colength_wf_list, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal-wf-T-base, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
null_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
unionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
imageElimination
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    (ml-int-vec-add(as;bs)  \msim{}  as  +  bs)
 Date html generated: 
2017_09_29-PM-05_56_51
 Last ObjectModification: 
2017_05_19-PM-06_24_01
Theory : omega
Home
Index