Nuprl Lemma : ml-int-vec-mul_wf
∀[a:ℤ]. ∀[as:ℤ List].  (ml-int-vec-mul(a;as) ∈ ℤ List)
Proof
Definitions occuring in Statement : 
ml-int-vec-mul: ml-int-vec-mul(a;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ml-int-vec-mul: ml-int-vec-mul(a;as)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
ml-map_wf, 
int-valueall-type, 
int-value-type, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
productElimination, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (ml-int-vec-mul(a;as)  \mmember{}  \mBbbZ{}  List)
Date html generated:
2017_09_29-PM-05_56_41
Last ObjectModification:
2017_05_19-PM-05_43_52
Theory : omega
Home
Index