Nuprl Lemma : ml-int-vec-mul_wf

[a:ℤ]. ∀[as:ℤ List].  (ml-int-vec-mul(a;as) ∈ ℤ List)


Proof




Definitions occuring in Statement :  ml-int-vec-mul: ml-int-vec-mul(a;as) list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ml-int-vec-mul: ml-int-vec-mul(a;as) uimplies: supposing a and: P ∧ Q cand: c∧ B
Lemmas referenced :  ml-map_wf int-valueall-type int-value-type list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache independent_isectElimination hypothesis independent_pairFormation productElimination lambdaEquality multiplyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (ml-int-vec-mul(a;as)  \mmember{}  \mBbbZ{}  List)



Date html generated: 2017_09_29-PM-05_56_41
Last ObjectModification: 2017_05_19-PM-05_43_52

Theory : omega


Home Index