Nuprl Lemma : ml-map_wf

[A,B:Type].  ∀[f:A ⟶ B]. ∀[l:A List].  (ml-map(f;l) ∈ List) supposing (valueall-type(A) ∧ A) ∧ value-type(B)


Proof




Definitions occuring in Statement :  ml-map: ml-map(f;l) list: List valueall-type: valueall-type(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q
Lemmas referenced :  ml-map-sq map_wf list_wf valueall-type_wf value-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule cumulativity functionExtensionality applyEquality productElimination functionEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry productEquality universeEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].    (ml-map(f;l)  \mmember{}  B  List)  supposing  (valueall-type(A)  \mwedge{}  A)  \mwedge{}  value-type(B)



Date html generated: 2017_09_29-PM-05_50_56
Last ObjectModification: 2017_05_10-PM-07_00_05

Theory : ML


Home Index