Nuprl Lemma : ml-list-delete_wf
∀[T:Type]. ∀[L:T List]. ∀[i:ℤ].  (ml-list-delete(L;i) ∈ T List) supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
ml-list-delete: ml-list-delete(as;i)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
ml-list-delete-sq, 
list-delete_wf, 
list_wf, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbZ{}].    (ml-list-delete(L;i)  \mmember{}  T  List)  supposing  valueall-type(T)
Date html generated:
2017_09_29-PM-05_57_05
Last ObjectModification:
2017_05_19-PM-06_12_01
Theory : omega
Home
Index