Step
*
1
2
1
2
of Lemma
satisfies-gcd-reduce-ineq-constraints
1. n : ℕ+
2. v : ℤ List
3. ||[1 / v]|| = n ∈ ℤ
4. u : {L:ℤ List| ||L|| = n ∈ ℤ}
5. v1 : {L:ℤ List| ||L|| = n ∈ ℤ} List
6. ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈v1.[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;v1))) ∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;v1)).[1 / v] ⋅ as ≥0)))
⊢ ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈[u / v1].[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;[u / v1])))
∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;[u / v1])).[1 / v] ⋅ as ≥0)))
BY
{ RepeatFor 2 (DVar `u') }
1
1. n : ℕ+
2. v : ℤ List
3. ||[1 / v]|| = n ∈ ℤ
4. [%5] : ||[]|| = n ∈ ℤ
5. v1 : {L:ℤ List| ||L|| = n ∈ ℤ} List
6. ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈v1.[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;v1))) ∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;v1)).[1 / v] ⋅ as ≥0)))
⊢ ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈[[] / v1].[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;[[] / v1])))
∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;[[] / v1])).[1 / v] ⋅ as ≥0)))
2
1. n : ℕ+
2. v : ℤ List
3. ||[1 / v]|| = n ∈ ℤ
4. u : ℤ
5. v2 : ℤ List
6. [%5] : ||[u / v2]|| = n ∈ ℤ
7. v1 : {L:ℤ List| ||L|| = n ∈ ℤ} List
8. ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈v1.[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;v1))) ∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;v1)).[1 / v] ⋅ as ≥0)))
⊢ ∀sat:{L:ℤ List| ||L|| = n ∈ ℤ} List
((∀as∈sat.[1 / v] ⋅ as ≥0)
⇒ (∀as∈[[u / v2] / v1].[1 / v] ⋅ as ≥0)
⇒ ((↑isl(gcd-reduce-ineq-constraints(sat;[[u / v2] / v1])))
∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;[[u / v2] / v1])).[1 / v] ⋅ as ≥0)))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. v : \mBbbZ{} List
3. ||[1 / v]|| = n
4. u : \{L:\mBbbZ{} List| ||L|| = n\}
5. v1 : \{L:\mBbbZ{} List| ||L|| = n\} List
6. \mforall{}sat:\{L:\mBbbZ{} List| ||L|| = n\} List
((\mforall{}as\mmember{}sat.[1 / v] \mcdot{} as \mgeq{}0)
{}\mRightarrow{} (\mforall{}as\mmember{}v1.[1 / v] \mcdot{} as \mgeq{}0)
{}\mRightarrow{} ((\muparrow{}isl(gcd-reduce-ineq-constraints(sat;v1)))
\mwedge{} (\mforall{}as\mmember{}outl(gcd-reduce-ineq-constraints(sat;v1)).[1 / v] \mcdot{} as \mgeq{}0)))
\mvdash{} \mforall{}sat:\{L:\mBbbZ{} List| ||L|| = n\} List
((\mforall{}as\mmember{}sat.[1 / v] \mcdot{} as \mgeq{}0)
{}\mRightarrow{} (\mforall{}as\mmember{}[u / v1].[1 / v] \mcdot{} as \mgeq{}0)
{}\mRightarrow{} ((\muparrow{}isl(gcd-reduce-ineq-constraints(sat;[u / v1])))
\mwedge{} (\mforall{}as\mmember{}outl(gcd-reduce-ineq-constraints(sat;[u / v1])).[1 / v] \mcdot{} as \mgeq{}0)))
By
Latex:
RepeatFor 2 (DVar `u')
Home
Index