Nuprl Lemma : apply-partial-indep

[A,B:Type]. ∀[f:partial(A ⟶ B)]. ∀[a:A].  a ∈ partial(B) supposing value-type(B)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  apply-partial value-type_wf partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:partial(A  {}\mrightarrow{}  B)].  \mforall{}[a:A].    f  a  \mmember{}  partial(B)  supposing  value-type(B)



Date html generated: 2016_05_14-AM-06_10_19
Last ObjectModification: 2015_12_26-AM-11_51_56

Theory : partial_1


Home Index