Nuprl Lemma : apply-partial-indep
∀[A,B:Type]. ∀[f:partial(A ⟶ B)]. ∀[a:A].  f a ∈ partial(B) supposing value-type(B)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
apply-partial, 
value-type_wf, 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:partial(A  {}\mrightarrow{}  B)].  \mforall{}[a:A].    f  a  \mmember{}  partial(B)  supposing  value-type(B)
Date html generated:
2016_05_14-AM-06_10_19
Last ObjectModification:
2015_12_26-AM-11_51_56
Theory : partial_1
Home
Index