Nuprl Lemma : apply-partial
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:partial(a:A ⟶ B[a])]. ∀[a:A].  f a ∈ partial(B[a]) supposing value-type(B[a])
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
has-value: (a)↓
, 
not: ¬A
, 
false: False
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
partial_wf, 
pair-eta, 
subtype_rel_product, 
top_wf, 
pi2_wf, 
equal_wf, 
pi1_wf, 
partial-not-exception, 
termination, 
has-value_wf-partial, 
function-value-type, 
value-type_wf, 
base-member-partial, 
has-value_wf_base, 
exception-not-value, 
value-type-has-value, 
is-exception_wf, 
and_wf, 
member_wf, 
base-equal-partial, 
termination-equality-base, 
squash_wf, 
true_wf, 
subtype_rel_self, 
subtype_rel_wf, 
iff_weakening_equal, 
equal-wf-base-T
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairEquality, 
hypothesisEquality, 
thin, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
lambdaFormation, 
pointwiseFunctionality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
axiomEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
callbyvalueApply, 
applyExceptionCases, 
imageElimination, 
isectEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
natural_numberEquality, 
hyp_replacement, 
equalityElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:partial(a:A  {}\mrightarrow{}  B[a])].  \mforall{}[a:A].
    f  a  \mmember{}  partial(B[a])  supposing  value-type(B[a])
Date html generated:
2017_04_14-AM-07_40_36
Last ObjectModification:
2017_02_27-PM-03_13_07
Theory : partial_1
Home
Index