Nuprl Lemma : apply-partial

[A:Type]. ∀[B:A ⟶ Type]. ∀[f:partial(a:A ⟶ B[a])]. ∀[a:A].  a ∈ partial(B[a]) supposing value-type(B[a])


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] uimplies: supposing a top: Top prop: and: P ∧ Q exists: x:A. B[x] squash: T has-value: (a)↓ not: ¬A false: False true: True iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q
Lemmas referenced :  partial_wf pair-eta subtype_rel_product top_wf pi2_wf equal_wf pi1_wf partial-not-exception termination has-value_wf-partial function-value-type value-type_wf base-member-partial has-value_wf_base exception-not-value value-type-has-value is-exception_wf and_wf member_wf base-equal-partial termination-equality-base squash_wf true_wf subtype_rel_self subtype_rel_wf iff_weakening_equal equal-wf-base-T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairEquality hypothesisEquality thin productEquality extract_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity applyEquality functionExtensionality hypothesis lambdaFormation pointwiseFunctionality sqequalRule equalityTransitivity equalitySymmetry lambdaEquality independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache axiomEquality productElimination dependent_functionElimination independent_functionElimination independent_pairFormation dependent_pairFormation imageMemberEquality baseClosed baseApply closedConclusion callbyvalueApply applyExceptionCases imageElimination isectEquality dependent_set_memberEquality applyLambdaEquality setElimination rename instantiate universeEquality natural_numberEquality hyp_replacement equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:partial(a:A  {}\mrightarrow{}  B[a])].  \mforall{}[a:A].
    f  a  \mmember{}  partial(B[a])  supposing  value-type(B[a])



Date html generated: 2017_04_14-AM-07_40_36
Last ObjectModification: 2017_02_27-PM-03_13_07

Theory : partial_1


Home Index