Nuprl Lemma : base-partial-partial

[A:Type]. (base-partial(partial(A)) ⊆base-partial(A))


Proof




Definitions occuring in Statement :  partial: partial(T) base-partial: base-partial(T) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T base-partial: base-partial(T) so_lambda: λ2x.t[x] prop: and: P ∧ Q uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q cand: c∧ B partial: partial(T) quotient: x,y:A//B[x; y] per-partial: per-partial(T;x;y)
Lemmas referenced :  subtype_rel_sets base_wf has-value_wf_base equal-wf-base not_wf is-exception_wf partial_wf base-partial_wf per-partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache Error :lambdaEquality_alt,  productEquality isectEquality hypothesisEquality Error :universeIsType,  independent_isectElimination setElimination rename Error :setIsType,  Error :productIsType,  Error :isectIsType,  Error :equalityIsType4,  Error :lambdaFormation_alt,  productElimination independent_pairFormation pertypeElimination Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  (base-partial(partial(A))  \msubseteq{}r  base-partial(A))



Date html generated: 2019_06_20-PM-00_33_46
Last ObjectModification: 2018_10_06-PM-04_18_29

Theory : partial_1


Home Index