Nuprl Lemma : le_int-wf-partial2
∀[x,y:partial(ℤ)].  (x ≤z y ∈ partial(𝔹))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
le_int: i ≤z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
le_int-wf-partial, 
subtype_rel_partial, 
base_wf, 
int_subtype_base, 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[x,y:partial(\mBbbZ{})].    (x  \mleq{}z  y  \mmember{}  partial(\mBbbB{}))
Date html generated:
2016_05_14-AM-06_10_36
Last ObjectModification:
2015_12_26-AM-11_51_46
Theory : partial_1
Home
Index