Nuprl Lemma : le_int-wf-partial
∀[x,y:partial(Base)].  (x ≤z y ∈ partial(𝔹))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
le_int: i ≤z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
not: ¬A
, 
squash: ↓T
, 
lt_int: i <z j
, 
false: False
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
has-value: (a)↓
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
Lemmas referenced : 
base-member-partial, 
bool_wf, 
union-value-type, 
unit_wf2, 
partial-base, 
has-value-bnot-type, 
top_wf, 
bfalse_wf, 
btrue_wf, 
equal_wf, 
is-exception_wf, 
partial_wf, 
base_wf, 
exception-not-value, 
value-type-has-value, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
less_than_wf, 
has-value_wf_base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
partial-not-exception
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
decideExceptionCases, 
imageElimination, 
imageMemberEquality, 
lessExceptionCases, 
voidElimination, 
equalityElimination, 
productElimination, 
lessCases, 
axiomSqEquality, 
independent_pairFormation, 
voidEquality, 
natural_numberEquality, 
divergentSqle, 
sqleReflexivity, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[x,y:partial(Base)].    (x  \mleq{}z  y  \mmember{}  partial(\mBbbB{}))
Date html generated:
2019_06_20-PM-00_34_21
Last ObjectModification:
2018_08_21-PM-01_53_29
Theory : partial_1
Home
Index