Nuprl Lemma : le_int-wf-partial

[x,y:partial(Base)].  (x ≤y ∈ partial(𝔹))


Proof




Definitions occuring in Statement :  partial: partial(T) le_int: i ≤j bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bool: 𝔹 subtype_rel: A ⊆B le_int: i ≤j bnot: ¬bb ifthenelse: if then else fi  all: x:A. B[x] implies:  Q prop: not: ¬A squash: T lt_int: i <j false: False unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True has-value: (a)↓ bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} assert: b
Lemmas referenced :  base-member-partial bool_wf union-value-type unit_wf2 partial-base has-value-bnot-type top_wf bfalse_wf btrue_wf equal_wf is-exception_wf partial_wf base_wf exception-not-value value-type-has-value lt_int_wf eqtt_to_assert assert_of_lt_int less_than_wf has-value_wf_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot partial-not-exception
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule because_Cache baseApply closedConclusion baseClosed hypothesisEquality applyEquality equalityTransitivity equalitySymmetry unionEquality lambdaFormation unionElimination dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality decideExceptionCases imageElimination imageMemberEquality lessExceptionCases voidElimination equalityElimination productElimination lessCases axiomSqEquality independent_pairFormation voidEquality natural_numberEquality divergentSqle sqleReflexivity dependent_pairFormation promote_hyp instantiate cumulativity

Latex:
\mforall{}[x,y:partial(Base)].    (x  \mleq{}z  y  \mmember{}  partial(\mBbbB{}))



Date html generated: 2019_06_20-PM-00_34_21
Last ObjectModification: 2018_08_21-PM-01_53_29

Theory : partial_1


Home Index