Nuprl Lemma : implies-usquash
∀[T:ℙ]. (T 
⇒ (∀x:Top. (x ∈ usquash(T))))
Proof
Definitions occuring in Statement : 
usquash: usquash(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
usquash: usquash(T)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
top: Top
Lemmas referenced : 
top_wf, 
pertype_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality, 
pointwiseFunctionalityForEquality, 
isectElimination, 
independent_isectElimination, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
pertypeMemberEquality
Latex:
\mforall{}[T:\mBbbP{}].  (T  {}\mRightarrow{}  (\mforall{}x:Top.  (x  \mmember{}  usquash(T))))
Date html generated:
2019_06_20-AM-11_29_53
Last ObjectModification:
2018_09_05-PM-06_43_35
Theory : per!type!1
Home
Index