Nuprl Lemma : implies-usquash

[T:ℙ]. (T  (∀x:Top. (x ∈ usquash(T))))


Proof




Definitions occuring in Statement :  usquash: usquash(T) uall: [x:A]. B[x] top: Top prop: all: x:A. B[x] implies:  Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] usquash: usquash(T) prop: uimplies: supposing a so_apply: x[s1;s2] top: Top
Lemmas referenced :  top_wf pertype_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis extract_by_obid hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination thin axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality pointwiseFunctionalityForEquality isectElimination independent_isectElimination applyEquality isect_memberEquality voidElimination voidEquality pertypeMemberEquality

Latex:
\mforall{}[T:\mBbbP{}].  (T  {}\mRightarrow{}  (\mforall{}x:Top.  (x  \mmember{}  usquash(T))))



Date html generated: 2019_06_20-AM-11_29_53
Last ObjectModification: 2018_09_05-PM-06_43_35

Theory : per!type!1


Home Index