Nuprl Lemma : member-usquash

[T:ℙ]. (usquash(T)  (∀x:Top. (x ∈ usquash(T))))


Proof




Definitions occuring in Statement :  usquash: usquash(T) uall: [x:A]. B[x] top: Top prop: all: x:A. B[x] implies:  Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] usquash: usquash(T) prop:
Lemmas referenced :  istype-top usquash_wf implies-usquash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution pertypeElimination2 sqequalRule thin universeIsType hypothesisEquality hypothesis extract_by_obid isectElimination lambdaEquality_alt dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType universeEquality independent_functionElimination

Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  {}\mRightarrow{}  (\mforall{}x:Top.  (x  \mmember{}  usquash(T))))



Date html generated: 2020_05_19-PM-09_35_55
Last ObjectModification: 2020_05_17-PM-04_44_53

Theory : per!type!1


Home Index