Nuprl Lemma : member-usquash
∀[T:ℙ]. (usquash(T) 
⇒ (∀x:Top. (x ∈ usquash(T))))
Proof
Definitions occuring in Statement : 
usquash: usquash(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
usquash: usquash(T)
, 
prop: ℙ
Lemmas referenced : 
istype-top, 
usquash_wf, 
implies-usquash
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
pertypeElimination2, 
sqequalRule, 
thin, 
universeIsType, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  {}\mRightarrow{}  (\mforall{}x:Top.  (x  \mmember{}  usquash(T))))
Date html generated:
2020_05_19-PM-09_35_55
Last ObjectModification:
2020_05_17-PM-04_44_53
Theory : per!type!1
Home
Index