Nuprl Lemma : uand-subtype2

[A,B:Type].  (uand(A;B) ⊆B)


Proof




Definitions occuring in Statement :  uand: uand(A;B) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uand: uand(A;B) has-value: (a)↓ prop:
Lemmas referenced :  uand_wf has-value_wf_base is-exception_wf sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution isectElimination thin baseClosed sqequalRule extract_by_obid hypothesisEquality hypothesis axiomEquality universeEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry applyEquality divergentSqle sqleReflexivity rename isectEquality

Latex:
\mforall{}[A,B:Type].    (uand(A;B)  \msubseteq{}r  B)



Date html generated: 2019_06_20-AM-11_29_56
Last ObjectModification: 2018_08_21-AM-00_02_26

Theory : per!type


Home Index