Nuprl Lemma : uand-subtype2
∀[A,B:Type].  (uand(A;B) ⊆r B)
Proof
Definitions occuring in Statement : 
uand: uand(A;B)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
uand_wf, 
has-value_wf_base, 
is-exception_wf, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
sqequalRule, 
extract_by_obid, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
divergentSqle, 
sqleReflexivity, 
rename, 
isectEquality
Latex:
\mforall{}[A,B:Type].    (uand(A;B)  \msubseteq{}r  B)
Date html generated:
2019_06_20-AM-11_29_56
Last ObjectModification:
2018_08_21-AM-00_02_26
Theory : per!type
Home
Index