Nuprl Lemma : half-squash-stable__all

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. half-squash-stable(P[x]))  half-squash-stable(∀x:T. P[x]))


Proof




Definitions occuring in Statement :  half-squash-stable: half-squash-stable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] half-squash-stable: half-squash-stable(P) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  implies-quotient-true half-squash-stable_wf equiv_rel_true true_wf all_wf quotient_wf
Rules used in proof :  dependent_functionElimination promote_hyp independent_functionElimination universeEquality functionEquality independent_isectElimination hypothesis because_Cache functionExtensionality applyEquality lambdaEquality sqequalRule cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  half-squash-stable(P[x]))  {}\mRightarrow{}  half-squash-stable(\mforall{}x:T.  P[x]))



Date html generated: 2017_09_29-PM-05_48_11
Last ObjectModification: 2017_08_30-AM-11_09_48

Theory : quot_1


Home Index