Nuprl Lemma : half-squash-stable__all
∀[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. half-squash-stable(P[x])) 
⇒ half-squash-stable(∀x:T. P[x]))
Proof
Definitions occuring in Statement : 
half-squash-stable: half-squash-stable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
half-squash-stable: half-squash-stable(P)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
implies-quotient-true, 
half-squash-stable_wf, 
equiv_rel_true, 
true_wf, 
all_wf, 
quotient_wf
Rules used in proof : 
dependent_functionElimination, 
promote_hyp, 
independent_functionElimination, 
universeEquality, 
functionEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  half-squash-stable(P[x]))  {}\mRightarrow{}  half-squash-stable(\mforall{}x:T.  P[x]))
Date html generated:
2017_09_29-PM-05_48_11
Last ObjectModification:
2017_08_30-AM-11_09_48
Theory : quot_1
Home
Index