Nuprl Lemma : quotient-top-prod-top
⇃(Top × Top) ⊆r (Top × Top)
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
product: x:A × B[x]
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
top_wf, 
true_wf, 
equal_wf, 
equal-wf-base, 
quotient_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
pointwiseFunctionalityForEquality, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
independent_isectElimination
Latex:
\00D9(Top  \mtimes{}  Top)  \msubseteq{}r  (Top  \mtimes{}  Top)
Date html generated:
2017_04_14-AM-07_40_06
Last ObjectModification:
2017_02_27-PM-03_11_25
Theory : quot_1
Home
Index