Nuprl Lemma : sq_stable-implies-half-squash-stable

[P:ℙ]. (SqStable(P)  half-squash-stable(P))


Proof




Definitions occuring in Statement :  half-squash-stable: half-squash-stable(P) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: implies:  Q
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: member: t ∈ T sq_stable: SqStable(P) half-squash-stable: half-squash-stable(P) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  squash-from-quotient sq_stable_wf equiv_rel_true true_wf quotient_wf
Rules used in proof :  universeEquality independent_isectElimination because_Cache lambdaEquality sqequalRule hypothesisEquality cumulativity isectElimination extract_by_obid introduction cut hypothesis thin independent_functionElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P:\mBbbP{}].  (SqStable(P)  {}\mRightarrow{}  half-squash-stable(P))



Date html generated: 2017_09_29-PM-05_48_12
Last ObjectModification: 2017_08_30-AM-11_02_23

Theory : quot_1


Home Index