Nuprl Lemma : sq_stable-implies-half-squash-stable
∀[P:ℙ]. (SqStable(P) 
⇒ half-squash-stable(P))
Proof
Definitions occuring in Statement : 
half-squash-stable: half-squash-stable(P)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
half-squash-stable: half-squash-stable(P)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
squash-from-quotient, 
sq_stable_wf, 
equiv_rel_true, 
true_wf, 
quotient_wf
Rules used in proof : 
universeEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
hypothesis, 
thin, 
independent_functionElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P:\mBbbP{}].  (SqStable(P)  {}\mRightarrow{}  half-squash-stable(P))
Date html generated:
2017_09_29-PM-05_48_12
Last ObjectModification:
2017_08_30-AM-11_02_23
Theory : quot_1
Home
Index