Nuprl Lemma : rec-value-valueall-type

valueall-type(rec-value())


Proof




Definitions occuring in Statement :  rec-value: rec-value() valueall-type: valueall-type(T)
Definitions unfolded in proof :  valueall-type: valueall-type(T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q has-value: (a)↓ prop:
Lemmas referenced :  rec-value-evalall equal-wf-base rec-value_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination equalityTransitivity hypothesis equalitySymmetry sqequalRule axiomSqleEquality because_Cache isect_memberEquality

Latex:
valueall-type(rec-value())



Date html generated: 2016_05_14-PM-03_21_14
Last ObjectModification: 2015_12_26-PM-02_26_58

Theory : rec_values


Home Index