Nuprl Lemma : linorder_lt_neg
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ((∀x,y:T.  Dec(R[x;y])) 
⇒ Linorder(T;x,y.R[x;y]) 
⇒ (∀a,b:T.  (¬strict_part(x,y.R[x;y];a;b) 
⇐⇒ R[b;a])))
Proof
Definitions occuring in Statement : 
linorder: Linorder(T;x,y.R[x; y])
, 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
linorder: Linorder(T;x,y.R[x; y])
, 
connex: Connex(T;x,y.R[x; y])
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
not_wf, 
strict_part_wf, 
linorder_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    Dec(R[x;y]))
    {}\mRightarrow{}  Linorder(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}a,b:T.    (\mneg{}strict\_part(x,y.R[x;y];a;b)  \mLeftarrow{}{}\mRightarrow{}  R[b;a])))
Date html generated:
2019_06_20-PM-00_30_02
Last ObjectModification:
2018_09_26-PM-00_04_59
Theory : rel_1
Home
Index