Nuprl Lemma : trans_rel_func_wrt_sym_self

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R[x;y])
   {∀a,a',b,b':T.  (Symmetrize(x,y.R[x;y];a;b)  Symmetrize(x,y.R[x;y];a';b')  (R[a;a'] ⇐⇒ R[b;b']))})


Proof




Definitions occuring in Statement :  symmetrize: Symmetrize(x,y.R[x; y];a;b) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  symmetrize: Symmetrize(x,y.R[x; y];a;b) guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_apply: x[s1;s2] rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2y.t[x; y]
Lemmas referenced :  subtype_rel_self trans_wf trans_rel_self_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin applyEquality hypothesisEquality productEquality cut hypothesis instantiate introduction extract_by_obid isectElimination universeEquality because_Cache lambdaEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[x;y])
    {}\mRightarrow{}  \{\mforall{}a,a',b,b':T.
                (Symmetrize(x,y.R[x;y];a;b)  {}\mRightarrow{}  Symmetrize(x,y.R[x;y];a';b')  {}\mRightarrow{}  (R[a;a']  \mLeftarrow{}{}\mRightarrow{}  R[b;b']))\})



Date html generated: 2019_06_20-PM-00_29_00
Last ObjectModification: 2018_09_26-AM-11_46_40

Theory : rel_1


Home Index