Nuprl Lemma : ulinorder_le_neg

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (UniformLinorder(T;x,y.R[x;y])  (∀[a,b:T].  uiff(¬R[a;b];strict_part(x,y.R[x;y];b;a))))


Proof




Definitions occuring in Statement :  ulinorder: UniformLinorder(T;x,y.R[x; y]) strict_part: strict_part(x,y.R[x; y];a;b) uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A false: False so_apply: x[s1;s2] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] strict_part: strict_part(x,y.R[x; y];a;b) urefl: UniformlyRefl(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) ulinorder: UniformLinorder(T;x,y.R[x; y]) or: P ∨ Q all: x:A. B[x]
Lemmas referenced :  not_wf strict_part_wf ulinorder_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination applyEquality functionExtensionality cumulativity hypothesis universeEquality rename extract_by_obid isectElimination independent_functionElimination because_Cache functionEquality productElimination independent_isectElimination unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformLinorder(T;x,y.R[x;y])  {}\mRightarrow{}  (\mforall{}[a,b:T].    uiff(\mneg{}R[a;b];strict\_part(x,y.R[x;y];b;a))))



Date html generated: 2016_10_21-AM-09_43_05
Last ObjectModification: 2016_08_01-PM-09_48_48

Theory : rel_1


Home Index