Nuprl Lemma : rel_star_closure2

[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
  (Refl(T)(R2[_1;_2])  Trans(T)(R2[_1;_2])  (∀x,y:T.  ((x y)  R2[x;y]))  (∀x,y:T.  ((x (R^*) y)  R2[x;y])))


Proof




Definitions occuring in Statement :  rel_star: R^* trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T infix_ap: y so_apply: x[s1;s2] or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] guard: {T} refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  rel_star_closure rel_star_wf all_wf trans_wf refl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis sqequalRule dependent_functionElimination unionElimination applyEquality lambdaEquality functionEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality hyp_replacement equalitySymmetry applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Refl(T)(R2[$_{1}$;$_{2}$])
    {}\mRightarrow{}  Trans(T)(R2[$_{1}$;$_{2}$])
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  R2[x;y]))
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  rel\_star(T;  R)  y)  {}\mRightarrow{}  R2[x;y])))



Date html generated: 2019_06_20-PM-00_30_46
Last ObjectModification: 2018_09_26-PM-00_48_05

Theory : relations


Home Index