Nuprl Lemma : rel_star_closure2
∀[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
(Refl(T)(R2[_1;_2])
⇒ Trans(T)(R2[_1;_2])
⇒ (∀x,y:T. ((x R y)
⇒ R2[x;y]))
⇒ (∀x,y:T. ((x (R^*) y)
⇒ R2[x;y])))
Proof
Definitions occuring in Statement :
rel_star: R^*
,
trans: Trans(T;x,y.E[x; y])
,
refl: Refl(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
infix_ap: x f y
,
so_apply: x[s1;s2]
,
or: P ∨ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
guard: {T}
,
refl: Refl(T;x,y.E[x; y])
Lemmas referenced :
rel_star_closure,
rel_star_wf,
all_wf,
trans_wf,
refl_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
independent_functionElimination,
hypothesis,
sqequalRule,
dependent_functionElimination,
unionElimination,
applyEquality,
lambdaEquality,
functionEquality,
Error :inhabitedIsType,
Error :functionIsType,
Error :universeIsType,
universeEquality,
hyp_replacement,
equalitySymmetry,
applyLambdaEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(Refl(T)(R2[$_{1}$;$_{2}$])
{}\mRightarrow{} Trans(T)(R2[$_{1}$;$_{2}$])
{}\mRightarrow{} (\mforall{}x,y:T. ((x R y) {}\mRightarrow{} R2[x;y]))
{}\mRightarrow{} (\mforall{}x,y:T. ((x rel\_star(T; R) y) {}\mRightarrow{} R2[x;y])))
Date html generated:
2019_06_20-PM-00_30_46
Last ObjectModification:
2018_09_26-PM-00_48_05
Theory : relations
Home
Index