Nuprl Lemma : rel_star_closure2
∀[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
  (Refl(T)(R2[_1;_2]) 
⇒ Trans(T)(R2[_1;_2]) 
⇒ (∀x,y:T.  ((x R y) 
⇒ R2[x;y])) 
⇒ (∀x,y:T.  ((x (R^*) y) 
⇒ R2[x;y])))
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
trans: Trans(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
rel_star_closure, 
rel_star_wf, 
all_wf, 
trans_wf, 
refl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
unionElimination, 
applyEquality, 
lambdaEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Refl(T)(R2[$_{1}$;$_{2}$])
    {}\mRightarrow{}  Trans(T)(R2[$_{1}$;$_{2}$])
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  R2[x;y]))
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  rel\_star(T;  R)  y)  {}\mRightarrow{}  R2[x;y])))
Date html generated:
2019_06_20-PM-00_30_46
Last ObjectModification:
2018_09_26-PM-00_48_05
Theory : relations
Home
Index