Nuprl Lemma : rel_star_closure

[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
  (Trans(T)(R2[_1;_2])  (∀x,y:T.  ((x y)  (x R2 y)))  (∀x,y:T.  ((x (R^*) y)  ((x R2 y) ∨ (x y ∈ T)))))


Proof




Definitions occuring in Statement :  rel_star: R^* trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  bfalse: ff it: unit: Unit bool: 𝔹 so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] true: True top: Top subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) so_lambda: λ2x.t[x] uimplies: supposing a not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: prop: member: t ∈ T btrue: tt eq_int: (i =z j) ifthenelse: if then else fi  rel_exp: R^n or: P ∨ Q guard: {T} exists: x:A. B[x] infix_ap: y rel_star: R^* all: x:A. B[x] implies:  Q uall: [x:A]. B[x] trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity exists_wf not_wf bnot_wf less_than_irreflexivity le_weakening less_than_transitivity1 assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf trans_wf rel_star_wf nat_wf primrec-wf2 less_than_wf set_wf equal_wf or_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf all_wf le_weakening2 le_wf false_wf rel_exp_wf infix_ap_wf
Rules used in proof :  impliesFunctionality equalityElimination productEquality equalitySymmetry equalityTransitivity baseClosed closedConclusion baseApply minusEquality intEquality voidEquality isect_memberEquality addEquality voidElimination unionElimination functionEquality lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination setElimination rename independent_pairFormation natural_numberEquality dependent_set_memberEquality universeEquality because_Cache isectElimination extract_by_obid introduction instantiate cumulativity hypothesisEquality functionExtensionality applyEquality inrFormation hypothesis cut thin productElimination sqequalRule sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inlFormation applyLambdaEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[R,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T)(R2[$_{1}$;$_{2}$])
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  R2  y)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  rel\_star(T;  R)  y)  {}\mRightarrow{}  ((x  R2  y)  \mvee{}  (x  =  y)))))



Date html generated: 2019_06_20-PM-00_30_44
Last ObjectModification: 2018_08_03-PM-05_27_20

Theory : relations


Home Index