Nuprl Lemma : confluent-equiv_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (confluent-equiv(T;x,y.R[x;y]) ∈ T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
confluent-equiv: confluent-equiv(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
confluent-equiv: confluent-equiv(T;x,y.R[x; y])
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
productEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (confluent-equiv(T;x,y.R[x;y])  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_24_46
Last ObjectModification:
2019_08_16-PM-03_05_46
Theory : relations2
Home
Index