Nuprl Lemma : image-per-transitive

[A:Type]. ∀[f:Base].  Trans(Base;x,y.image-per(A;f) y)


Proof




Definitions occuring in Statement :  image-per: image-per(A;f) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] apply: a base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] image-per: image-per(A;f) member: t ∈ T so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q usquash: usquash(T) top: Top subtype_rel: A ⊆B utrans: UniformlyTrans(T;x,y.E[x; y]) exists: x:A. B[x] infix_ap: y
Lemmas referenced :  transitive-closure-transitive exists_wf base_wf equal-wf-base usquash_wf transitive-closure_wf implies-usquash istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule Error :lambdaEquality_alt,  hypothesis productEquality sqequalIntensionalEquality hypothesisEquality baseApply closedConclusion baseClosed Error :inhabitedIsType,  Error :universeIsType,  universeEquality Error :lambdaFormation_alt,  applyEquality Error :pertypeElimination2,  independent_functionElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    Trans(Base;x,y.image-per(A;f)  x  y)



Date html generated: 2019_06_20-PM-02_02_35
Last ObjectModification: 2018_10_07-AM-00_50_51

Theory : relations2


Home Index