Nuprl Lemma : image-per_wf

[A:Type]. ∀[f:Base].  (image-per(A;f) ∈ Base ⟶ Base ⟶ ℙ)


Proof




Definitions occuring in Statement :  image-per: image-per(A;f) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T image-per: image-per(A;f) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  usquash_wf transitive-closure_wf base_wf exists_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis productEquality hypothesisEquality sqequalIntensionalEquality baseApply closedConclusion baseClosed axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    (image-per(A;f)  \mmember{}  Base  {}\mrightarrow{}  Base  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_02_32
Last ObjectModification: 2018_09_05-PM-08_26_40

Theory : relations2


Home Index