Nuprl Lemma : image-per_wf
∀[A:Type]. ∀[f:Base].  (image-per(A;f) ∈ Base ⟶ Base ⟶ ℙ)
Proof
Definitions occuring in Statement : 
image-per: image-per(A;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
image-per: image-per(A;f)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
usquash_wf, 
transitive-closure_wf, 
base_wf, 
exists_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
productEquality, 
hypothesisEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].    (image-per(A;f)  \mmember{}  Base  {}\mrightarrow{}  Base  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_02_32
Last ObjectModification:
2018_09_05-PM-08_26_40
Theory : relations2
Home
Index