Nuprl Lemma : rel-confluent_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (rel-confluent(T;x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  rel-confluent: rel-confluent(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-confluent: rel-confluent(T;x,y.R[x; y]) prop: all: x:A. B[x] implies:  Q so_apply: x[s1;s2] exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality hypothesisEquality applyEquality productEquality hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType universeEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel-confluent(T;x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_24_35
Last ObjectModification: 2019_08_16-PM-02_33_13

Theory : relations2


Home Index