Nuprl Lemma : strongwf-monotone
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ Type].  (R2 => R1 
⇒ SWellFounded(R1[x;y]) 
⇒ SWellFounded(R2[x;y]))
Proof
Definitions occuring in Statement : 
strongwellfounded: SWellFounded(R[x; y])
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
strongwellfounded: SWellFounded(R[x; y])
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
all_wf, 
less_than_wf, 
nat_wf, 
strongwellfounded_wf, 
rel_implies_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (R2  =>  R1  {}\mRightarrow{}  SWellFounded(R1[x;y])  {}\mRightarrow{}  SWellFounded(R2[x;y]))
Date html generated:
2016_05_14-PM-03_52_16
Last ObjectModification:
2015_12_26-PM-06_57_11
Theory : relations2
Home
Index