Nuprl Lemma : strongwf-monotone

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ Type].  (R2 => R1  SWellFounded(R1[x;y])  SWellFounded(R2[x;y]))


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) rel_implies: R1 => R2 uall: [x:A]. B[x] so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] member: t ∈ T all: x:A. B[x] rel_implies: R1 => R2 infix_ap: y so_apply: x[s1;s2] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] so_lambda: λ2y.t[x; y]
Lemmas referenced :  all_wf less_than_wf nat_wf strongwellfounded_wf rel_implies_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis dependent_functionElimination independent_functionElimination applyEquality because_Cache lemma_by_obid isectElimination sqequalRule lambdaEquality functionEquality setElimination rename cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (R2  =>  R1  {}\mRightarrow{}  SWellFounded(R1[x;y])  {}\mRightarrow{}  SWellFounded(R2[x;y]))



Date html generated: 2016_05_14-PM-03_52_16
Last ObjectModification: 2015_12_26-PM-06_57_11

Theory : relations2


Home Index