Step
*
2
2
1
2
1
of Lemma
transitive-closure-cases
1. A : Type
2. R : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. a1 : A
6. b1 : A
7. u5 : R a1 b1
8. a : A
9. b : A
10. u4 : R a b
11. v : (a:A × b:A × (R a b)) List
12. rel_path(A;[<a1, b1, u5>; [<a, b, u4> / v]];x;y)
13. 0 < (||v|| + 1) + 1
14. x R b1
⊢ rel_path(A;[<a, b, u4> / v];b1;y)
BY
{ (All (RepUR ``rel_path``) THEN Auto) }
Latex:
Latex:
1. A : Type
2. R : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. x : A
4. y : A
5. a1 : A
6. b1 : A
7. u5 : R a1 b1
8. a : A
9. b : A
10. u4 : R a b
11. v : (a:A \mtimes{} b:A \mtimes{} (R a b)) List
12. rel\_path(A;[<a1, b1, u5> [<a, b, u4> / v]];x;y)
13. 0 < (||v|| + 1) + 1
14. x R b1
\mvdash{} rel\_path(A;[<a, b, u4> / v];b1;y)
By
Latex:
(All (RepUR ``rel\_path``) THEN Auto)
Home
Index