Nuprl Lemma : subtype_rel_tunion
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[C:Type]. ∀[D:C ⟶ Type].
  (⋃a:A.B[a] ⊆r ⋃c:C.D[c]) supposing ((∀a:A. (B[a] ⊆r D[a])) and (A ⊆r C))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_wf, 
all_wf, 
subtype_rel_product, 
subtype_rel_image
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
applyEquality, 
baseClosed, 
independent_isectElimination, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:Type].  \mforall{}[D:C  {}\mrightarrow{}  Type].
    (\mcup{}a:A.B[a]  \msubseteq{}r  \mcup{}c:C.D[c])  supposing  ((\mforall{}a:A.  (B[a]  \msubseteq{}r  D[a]))  and  (A  \msubseteq{}r  C))
Date html generated:
2016_05_13-PM-03_18_41
Last ObjectModification:
2016_01_14-PM-04_32_01
Theory : subtype_0
Home
Index