Nuprl Lemma : uall_instance_test
∀[F:Type ⟶ ℤ ⟶ ℤ ⟶ ℙ]. ∀x:∀[A:Type]. ∀[m,c:ℤ].  F[A;m;c]. ∀B:Type. ∀n,b:ℤ.  (x ∈ F[B;n;b])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
isect_wf, 
equal_wf, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isectEquality, 
universeEquality, 
cumulativity, 
instantiate, 
axiomEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}x:\mforall{}[A:Type].  \mforall{}[m,c:\mBbbZ{}].    F[A;m;c].  \mforall{}B:Type.  \mforall{}n,b:\mBbbZ{}.    (x  \mmember{}  F[B;n;b])
Date html generated:
2016_05_13-PM-03_19_37
Last ObjectModification:
2015_12_26-AM-09_07_42
Theory : subtype_0
Home
Index