Nuprl Lemma : uall_instance_test

[F:Type ⟶ ℤ ⟶ ℤ ⟶ ℙ]. ∀x:∀[A:Type]. ∀[m,c:ℤ].  F[A;m;c]. ∀B:Type. ∀n,b:ℤ.  (x ∈ F[B;n;b])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop:
Lemmas referenced :  isect_wf equal_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesisEquality applyEquality sqequalRule lambdaEquality isectElimination equalityTransitivity equalitySymmetry hypothesis thin lemma_by_obid sqequalHypSubstitution intEquality dependent_functionElimination independent_functionElimination isectEquality universeEquality cumulativity instantiate axiomEquality because_Cache functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}x:\mforall{}[A:Type].  \mforall{}[m,c:\mBbbZ{}].    F[A;m;c].  \mforall{}B:Type.  \mforall{}n,b:\mBbbZ{}.    (x  \mmember{}  F[B;n;b])



Date html generated: 2016_05_13-PM-03_19_37
Last ObjectModification: 2015_12_26-AM-09_07_42

Theory : subtype_0


Home Index