Nuprl Lemma : equal-in-subtype-implies

[A,B:Type]. ∀[x,y:A].  (x y ∈ B) supposing ((x y ∈ A) and (A ⊆B))


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} implies:  Q prop:
Lemmas referenced :  equal_functionality_wrt_subtype_rel2 equal_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:A].    (x  =  y)  supposing  ((x  =  y)  and  (A  \msubseteq{}r  B))



Date html generated: 2016_05_13-PM-04_10_47
Last ObjectModification: 2015_12_26-AM-11_21_53

Theory : subtype_1


Home Index