Nuprl Lemma : equal-in-subtype-implies
∀[A,B:Type]. ∀[x,y:A].  (x = y ∈ B) supposing ((x = y ∈ A) and (A ⊆r B))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:A].    (x  =  y)  supposing  ((x  =  y)  and  (A  \msubseteq{}r  B))
Date html generated:
2016_05_13-PM-04_10_47
Last ObjectModification:
2015_12_26-AM-11_21_53
Theory : subtype_1
Home
Index