Nuprl Lemma : id-fun-set

[A:Type]. ∀[P:A ⟶ ℙ]. ∀[f:id-fun(A)].  (f ∈ id-fun({a:A| P[a]} ))


Proof




Definitions occuring in Statement :  id-fun: id-fun(T) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] prop: uimplies: supposing a so_lambda: λ2x.t[x]
Lemmas referenced :  id-fun-subtype strong-subtype-set2 id-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis lambdaEquality sqequalRule universeEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:id-fun(A)].    (f  \mmember{}  id-fun(\{a:A|  P[a]\}  ))



Date html generated: 2016_05_13-PM-04_12_23
Last ObjectModification: 2015_12_26-AM-11_12_09

Theory : subtype_1


Home Index