Nuprl Lemma : id-fun-set
∀[A:Type]. ∀[P:A ⟶ ℙ]. ∀[f:id-fun(A)].  (f ∈ id-fun({a:A| P[a]} ))
Proof
Definitions occuring in Statement : 
id-fun: id-fun(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
id-fun-subtype, 
strong-subtype-set2, 
id-fun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:id-fun(A)].    (f  \mmember{}  id-fun(\{a:A|  P[a]\}  ))
Date html generated:
2016_05_13-PM-04_12_23
Last ObjectModification:
2015_12_26-AM-11_12_09
Theory : subtype_1
Home
Index