Nuprl Lemma : inject_functionality

[A,B,C:Type]. ∀[f:B ⟶ C].  (Inj(A;C;f)) supposing (Inj(B;C;f) and strong-subtype(A;B))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] strong-subtype: strong-subtype(A;B) cand: c∧ B all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T prop: inject: Inj(A;B;f) guard: {T} label: ...$L... t
Lemmas referenced :  sq_stable__inject subtype_rel_dep_function inject_wf strong-subtype_wf strong-subtype-implies equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule lambdaEquality cumulativity independent_isectElimination hypothesis productElimination lambdaFormation because_Cache independent_functionElimination promote_hyp imageMemberEquality baseClosed imageElimination functionExtensionality functionEquality universeEquality dependent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].    (Inj(A;C;f))  supposing  (Inj(B;C;f)  and  strong-subtype(A;B))



Date html generated: 2017_04_14-AM-07_36_57
Last ObjectModification: 2017_02_27-PM-03_09_04

Theory : subtype_1


Home Index