Nuprl Lemma : isect-mono
∀A:Type. ∀B:A ⟶ Type.  ((∀a:A. mono(B[a])) 
⇒ mono(⋂a:A. B[a]))
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
mono: mono(T)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
Lemmas referenced : 
is-above_wf, 
base_wf, 
all_wf, 
mono_wf, 
is-above-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
isect_memberEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
independent_functionElimination, 
lemma_by_obid, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  mono(B[a]))  {}\mRightarrow{}  mono(\mcap{}a:A.  B[a]))
Date html generated:
2016_05_13-PM-04_13_52
Last ObjectModification:
2015_12_26-AM-11_10_24
Theory : subtype_1
Home
Index