Nuprl Lemma : isect-mono

A:Type. ∀B:A ⟶ Type.  ((∀a:A. mono(B[a]))  mono(⋂a:A. B[a]))


Proof




Definitions occuring in Statement :  mono: mono(T) so_apply: x[s] all: x:A. B[x] implies:  Q isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mono: mono(T) member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a
Lemmas referenced :  is-above_wf base_wf all_wf mono_wf is-above-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut isect_memberEquality sqequalHypSubstitution sqequalRule hypothesis dependent_functionElimination thin hypothesisEquality applyEquality lambdaEquality isectElimination because_Cache equalityTransitivity equalitySymmetry isectEquality independent_functionElimination lemma_by_obid functionEquality cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  mono(B[a]))  {}\mRightarrow{}  mono(\mcap{}a:A.  B[a]))



Date html generated: 2016_05_13-PM-04_13_52
Last ObjectModification: 2015_12_26-AM-11_10_24

Theory : subtype_1


Home Index